Spatiotopic updating of visual feature information.

نویسندگان

  • Eckart Zimmermann
  • Ralph Weidner
  • Gereon R Fink
چکیده

Saccades shift the retina with high-speed motion. In order to compensate for the sudden displacement, the visuomotor system needs to combine saccade-related information and visual metrics. Many neurons in oculomotor but also in visual areas shift their receptive field shortly before the execution of a saccade (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 2002). These shifts supposedly enable the binding of information from before and after the saccade. It is a matter of current debate whether these shifts are merely location based (i.e., involve remapping of abstract spatial coordinates) or also comprise information about visual features. We have recently presented fMRI evidence for a feature-based remapping mechanism in visual areas V3, V4, and VO (Zimmermann, Weidner, Abdollahi, & Fink, 2016). In particular, we found fMRI adaptation in cortical regions representing a stimulus' retinotopic as well as its spatiotopic position. Here, we asked whether spatiotopic adaptation exists independently from retinotopic adaptation and which type of information is behaviorally more relevant after saccade execution. We first adapted at the saccade target location only and found a spatiotopic tilt aftereffect. Then, we simultaneously adapted both the fixation and the saccade target location but with opposite tilt orientations. As a result, adaptation from the fixation location was carried retinotopically to the saccade target position. The opposite tilt orientation at the retinotopic location altered the effects induced by spatiotopic adaptation. More precisely, it cancelled out spatiotopic adaptation at the saccade target location. We conclude that retinotopic and spatiotopic visual adaptation are independent effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotopic updating across saccades revealed by spatially-specific fMRI adaptation

Brain representations of visual space are predominantly eye-centred (retinotopic) yet our experience of the world is largely world-centred (spatiotopic). A long-standing question is how the brain creates continuity between these reference frames across successive eye movements (saccades). Here we use functional magnetic resonance imaging (fMRI) to address whether spatially specific repetition s...

متن کامل

Spatiotopic neural representations develop slowly across saccades

One of the long-standing unsolved mysteries of visual neuroscience is how the world remains apparently stable in the face of continuous movements of eyes, head and body. Many factors seem to contribute to this stability, including rapid updating mechanisms that temporarily remap the visual input to compensate for the impending saccade. However, there is also a growing body of evidence pointing ...

متن کامل

Higher level visual cortex represents retinotopic, not spatiotopic, object location.

The crux of vision is to identify objects and determine their locations in the environment. Although initial visual representations are necessarily retinotopic (eye centered), interaction with the real world requires spatiotopic (absolute) location information. We asked whether higher level human visual cortex-important for stable object recognition and action-contains information about retinot...

متن کامل

Attention doesn't slide: spatiotopic updating after eye movements instantiates a new, discrete attentional locus.

During natural vision, eye movements can drastically alter the retinotopic (eye-centered) coordinates of locations and objects, yet the spatiotopic (world-centered) percept remains stable. Maintaining visuospatial attention in spatiotopic coordinates requires updating of attentional representations following each eye movement. However, this updating is not instantaneous; attentional facilitatio...

متن کامل

Cerebral Cortex doi:10.1093/cercor/bhr357 Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location

The crux of vision is to identify objects and determine their locations in the environment. Although initial visual representations are necessarily retinotopic (eye centered), interaction with the real world requires spatiotopic (absolute) location information. We asked whether higher level human visual cortex—important for stable object recognition and action—contains information about retinot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of vision

دوره 17 12  شماره 

صفحات  -

تاریخ انتشار 2017